Robust Visual Tracking Using Sparse Discriminative Graph Embedding
نویسندگان
چکیده
منابع مشابه
Robust visual tracking using structural region hierarchy and graph matching
Visual tracking aims to match objects of interest in consecutive video frames. This paper proposes a novel and robust algorithm to address the problem of object tracking. To this end, we investigate the fusion of state-of-the-art image segmentation hierarchies and graph matching. More specifically, (i) we represent the object to be tracked using a hierarchy of regions, each of which is describe...
متن کاملRobust Joint Discriminative Feature Learning for Visual Tracking
Because of the complementarity of multiple visual cues (features) in appearance modeling, many tracking algorithms attempt to fuse multiple features to improve the tracking performance from two aspects: increasing the representation accuracy against appearance variations and enhancing the discriminability between the tracked target and its background. Since both these two aspects simultaneously...
متن کاملGene Function Prediction via Discriminative Graph Embedding
Gene function has been a subject of interest but it is far from fully understood. It is known that some genes have certain functions but it is not clear whether those are all the functions they have. It is a recent trend to use different means to predict gene functions; one of them is to use computational methods on large data sets. Different types of information are used in computational metho...
متن کاملDiscriminative prototype selection methods for graph embedding
Graphs possess a strong representational power for many types of patterns. However, a main limitation in their use for pattern analysis derives from their difficult mathematical treatment. One way of circumventing this problem is that of transforming the graphs into a vector space by means of graph embedding. Such an embedding can be conveniently obtained by using a set of ‘‘prototype’’ graphs ...
متن کاملLow-Rank Sparse Learning for Robust Visual Tracking
In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2015
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2014edp7419