Robust Visual Tracking Using Sparse Discriminative Graph Embedding

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust visual tracking using structural region hierarchy and graph matching

Visual tracking aims to match objects of interest in consecutive video frames. This paper proposes a novel and robust algorithm to address the problem of object tracking. To this end, we investigate the fusion of state-of-the-art image segmentation hierarchies and graph matching. More specifically, (i) we represent the object to be tracked using a hierarchy of regions, each of which is describe...

متن کامل

Robust Joint Discriminative Feature Learning for Visual Tracking

Because of the complementarity of multiple visual cues (features) in appearance modeling, many tracking algorithms attempt to fuse multiple features to improve the tracking performance from two aspects: increasing the representation accuracy against appearance variations and enhancing the discriminability between the tracked target and its background. Since both these two aspects simultaneously...

متن کامل

Gene Function Prediction via Discriminative Graph Embedding

Gene function has been a subject of interest but it is far from fully understood. It is known that some genes have certain functions but it is not clear whether those are all the functions they have. It is a recent trend to use different means to predict gene functions; one of them is to use computational methods on large data sets. Different types of information are used in computational metho...

متن کامل

Discriminative prototype selection methods for graph embedding

Graphs possess a strong representational power for many types of patterns. However, a main limitation in their use for pattern analysis derives from their difficult mathematical treatment. One way of circumventing this problem is that of transforming the graphs into a vector space by means of graph embedding. Such an embedding can be conveniently obtained by using a set of ‘‘prototype’’ graphs ...

متن کامل

Low-Rank Sparse Learning for Robust Visual Tracking

In this paper, we propose a new particle-filter based tracking algorithm that exploits the relationship between particles (candidate targets). By representing particles as sparse linear combinations of dictionary templates, this algorithm capitalizes on the inherent low-rank structure of particle representations that are learned jointly. As such, it casts the tracking problem as a low-rank matr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEICE Transactions on Information and Systems

سال: 2015

ISSN: 0916-8532,1745-1361

DOI: 10.1587/transinf.2014edp7419